Warm-Up

- 1. -13, -43, -73, -103, ... Find a_{37}
- 2. $\sum_{k=1}^{5} (2k-4)$

Sequences and Series

2 types:

<u>Arithmetic</u>: Pattern progresses by adding/subtracting (Common difference)

Geometric: Pattern progresses by multiplying/dividing (Common ratio)

Equation for Arithmetic Sequence:

Specific a_n=a₁+(n-1) d

term

 a_n is the n^{th} term of the sequence a_1 is the first term d is the common difference

Arithmetic Series

Equation for arithmetic series:

$$S_n = n \left(\frac{\alpha_1 + \alpha_n}{2} \right)$$

 S_n is the sum of the first n terms of the series

Equation for Geometric Sequence:

 $a_n = a_1 r^{n-1}$

 a_n is the n^{th} term of the sequence a_1 is the first term r is the common ratio

term

What you are multiplying by

Examples

1. Write the next term of the sequence. Then write a rule for the nth term

a. 4, -8, 16, -32,...

b. 20, 10, 5, 5/2,...

c.-1, 2, -4, 8, -16,... d. 36, 12, 4, 4/3, ...

a. Write a rule for the nth term of the sequence

5,2, 0.8, 0.32, Then find a_{12}

$$Q_{12} = 5.4$$
 $Q_{12} = 5.4$
 $Q_{12} = 5.4$
 $Q_{12} = 5.4$
 $Q_{12} = 5.0971524$

White a rule for the n^{th} term of the carrence

b. Write a rule for the n^{th} term of the sequence 1,3,9,27,... Then find a_{12}

$$a_n = |\cdot 3^{n-1}|$$
 $a_{12} = |\cdot 3^{n-1}| = |77, 147$

Geometric Series

Equation for Geometric Series:

$$\sum_{n} S_{n} = \alpha_{1} \left(\frac{1-r^{n}}{1-r} \right)$$

 S_n is the sum of the first "n" terms of the series

1. Consider the geometric series 1+4+16+64+... Find the sum of the first 10 terms.

Find the sum of the first 10 terms.

$$S_{10} = 9 \cdot \left(\frac{1-r^{1}}{1-r}\right)$$

$$S_{10} = 1 \cdot \left(\frac{1-4^{10}}{1-4}\right)$$

$$S_{10} = 1 \cdot \left(\frac{1-4^{10}}{1-4}\right)$$

$$S_{10} = 1 \cdot \left(\frac{1-4^{10}}{1-4}\right)$$

$$S_{10} = 1 \cdot \left(\frac{349,525}{349,525}\right)$$

$$S_{10} = 349,525$$

2. Consider the geometric series:

Find the sum of the first 16 terms.

$$S_{16} = a_{1} \left(\frac{1-r''}{1-r} \right)$$

$$= a_{1} \left(\frac{1-(-z)^{16}}{1-(-z)} \right) = -43,690$$

